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Overall Project Description

* Flooding and landslides have been a very treacherous situation in Sri Lanka where
many areas are flooded for the slightest rain.

* Flooding happens due to various reasons such as human and natural reasons.
* Comprehensive analysis on utilizing IOT devices for weather prediction

* Analyze 3™ party API solutions which provides and real-time weather information
and develop Proof-of-Concept to verify the accuracy of weather information.

* Usage of data Mining algorithm for the weather prediction based on historic data
analysis.

 The implementation of the solution will comply of a web application and mobile
application will visualize the finalized data for the end users based on their needs
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Research Problem

* Unavailability of an early warning tool will be very costly for most of the countries

* One of the major problems that countries face when a flooding situation takes place
is, loss of human lives, property losses, agricultural losses, and economic losses.

« Due unadvanced system, poor coordination between people and the officials increase the
flood disaster loses and recovery plans are delayed.

* To address these situations, we propose to develop an early warning structure
to minimize the devastating destruction that could be caused.
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Objectives

* Main Objective

» Provide an early warning mechanism and predict severe weather conditions which
may cause flooding with the use of real-time and historical data.

* Sub Objectives

» Provide near real-time data collected from IoT devices feeds.

» Develop severe rainfall prediction model based on historic data analysis and
provide suggestions to the end users.

» Develop crowdsourcing solution to gather weather information from public crowd,
analyze and present them to the end users.

» Create the Flood Forecasting Model to predict the flooding for the selected specific
area using historic data collected from past years.
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Overall System Diagram
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Research Paper

1. ICAC - International Conference on Advancements in

Computing - 2021 Conference (SLIIT)

2. ICITR - International Conference on Information Technology

Research - 2021 (Moratuwa University)
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Commercialization

* Use for weather information application.

* Weather predictions for farmers near river
basin.

* Weather predictions for residents living near
river basin.

* First Responders in disaster management.
* Government authorities.

11/5/2021 8



1T18022902 | ILUKKUMBURES. P. M. K. W

Information Technology

% FACULTY OF COMPUTING  IT18022902 | llukkumbureS.P. M. K. W.| 2021-124 11/5/2021 9



INTRODUCTION

% FACULTY OF COMPUTING 11/5/2021 10



Research Question

* Sudden Flooding from a Rainfall can be predicted by pre-
existing models.

* Canresidents in that area get informed as soon as possible
before a heavy rainfall result it to flooding.

* Use of Data Driven Hydrological Models

» Compared with hydrological models, data-driven models can obtain better or

comparable forecasting results [3].
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Challenges

* Forecasting Shorter Times

(J Urban Areas

* Forecasting Longer Times

 Forecasting near river basin areas.

* Low Levels of accuracy
* Low Levels of performance
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Objectives

Specific Objective

* Create the Flood Forecasting Model to predict the flooding for the

selected specific area using historic data collected about past 3
years.

Sub objectives

* Analysis on river basin flooding using Hydrological model and data-
driven model.

* Provide method to overcome challenge of low performance and low
accuracy.
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Model Design
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Study Area in Research

Kalu River Basin
* Ellagawa

* Kalawellawa (Millakanda)

Ellagawa

L M agu I“a Ratnapura
Putupé(ualllaawellawa (Millakanda) Kalu Ganga

* Putupaula
* Ratnapura

Why?
Suitable for Poof-Of-Concept
* Urban Areas

* Riverside Areas
* Availability of Riverside data
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Methodology

* Data-mining Gathering

* Data Reports from DMC (Disaster

Management Centre).

 Daily Reports — Database

* Representation

» Dashboards
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Data used

Water Levels of change in river on

time basis
} weather - Number of water levels in a specific
~ m onalyeis station.
\ © forecast

Real-time Water levels

truth

by Unknown Author is licensed under Fl OW D i re Cti O n S O f th e rive r-

Rainfall model prediction’s data
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PP1 Achievement

* Successfully crawled through DMC scrapped data

* Processed and cleaned data

atnapura
Station

* Predicted water level of 5 stations in June

00000

Daily Water Level
o = =

» Daily water level Rising based on days of May. -
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Achievement

Rathanapura Rainfall Water Level

River Basin: Kalu Ganga (RB 03)

Ellagawa
River: Kalu Ganga
Catchment Area: 603
Water Level: 5.02 at 9.00AM & Ratnapura
Rainfall: 5.2 mm

Alert Level: 52m Kalawellawa (Millakanda)
Putupaula Kalu Ganga

Ellagawa

River Basin: Kalu Ganga (RB 03)

Magura - 0
. Esri, HERE, Garmin, METV/!
River: Kalu Ganga

Catchment Area: 1,393

Water Level: 5.02 m at 9.00AM

’
Rainfall: 2.6 mm q ’ [
A 3

Alert Level: 10 m

Stations at alert level

FACULTY OF COMPUTING 1T18022902 | [lukkumbureS.P.M.K. W.| 2021-124 11/5/2021 22



PP1 Achievement

* Training Accuracy of Simple Linear Regression

Data Accuracy

Alert Level, RF in mm 36.51%
Alert Level, Minor Level, Major Level, Water RF in mm 51.24%
Alert Level, Minor Level, Major Level, Water Level 1h, Water 62.5%
Level at the time, Water RF in mm

Alert Level, Minor Level, Major Level, Water Level 1h, Water 65.84%
Level at the time, Water RF in mm, Water Level Rising or Falling

Alert Level, Minor Level, Major Level, Water Level 1h, Water -4.29%

Level at the time, Water RF in mm, Water Level Rising or
Falling, Remarks

o SLIT
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PP1 Achievement

* Training Accuracy of Support vector machines

Data Accuracy
Alert Level, Minor Level, Major Level, Water Level 1h, Water 79.5%

Level at the time, Water RF in mm

Alert Level, Minor Level, Major Level, Water Level 1h, Water 93.84%
Level at the time, Water RF in mm, Water Level Rising or Falling

SLII
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Achievement

* Training Accuracy of Artificial Neural Network

Data Accuracy %

Adam Level at the time, Water RF in mm

Alert Level, Minor Level, Major Level, Water Level 1h, Water 84.3
Level at the time, Water RF in mm
Alert Level, Minor Level, Major Level, Water Level 1h, Water 89.01

Prediction Prediction

Epoch: 100

— Train 3.00 1 ﬂ

L
=]
i

Learning
Rate: 0.01
Learning
Rate Power:

SLII
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» Decision Making

e With Summarized Data

Classified
Judgement
(Human)

Final
Decision (Ai)

Summarized
Data

Big Data
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Progress

* Decision Making Model

Current_ Rain_Ran Water_Le

timestamp |_name ||_value |_name |_value |_name [_value Rain ge  vel_Class
>Data Sources - Distance Relative Temperat31.20000
1629734639 cm 4.097 Humidity 78 ure °C 1 FALSE NoRain 0
Distance Relative Temperat
. 1626886919 cm 3.978 Humidity 78 ure°C  31.6 FALSE NoRain 0
¢ IOT Sensor llve feEd Distance Relative Temperat
1626886920 cm 3.978 Humidity 78 ure°C  31.6 FALSE NoRain 0
Distance Relative Temperat
[ Ultra_SOniC Sensor Reading_ 1626887029 cm 3.995 Humidity 78 ure °C 31.6 FALSE NoRain 0
Distance Relative Temperat
1626887030 cm 3.995 Humidity 78 ure °C 31.6 FALSE NoRain 0
[ | Temperature Distance Relative Temperat
1626887039 cm 3.961 Humidity 78 ure°C  31.6 FALSE NoRain 0
* Humidity
 Rainfall Prediction value at the time.
» Water Level Prediction Model Classification value at the time.
------ SLIT
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» Decision Making

* Decision Tree

X[5]==15
gini = 0.469
samples = 700
valus = [437, 263]

N

= alpha=0.05

X[ ==15
gini = 0.18
samples = 389
value = [350, 39]

X[3]==05
gini = 0.403
samples = 311
value =[BT, 224]

ANV

X[0]==45
gini = 0.113
samples = 299
walue = [281, 18]

A\ )

¥[3]==05

gini = 0.358
samples = 90
value = [&89, 21]

X[a4]==15

gini = 0.331

samples = 43
walue = [34, 9]

X[4]==05
gini = 0.317
samples = 268
value = [33, 215]

gini = 0.239
samples = 72
value = [62, 10]

gini = 0.068
samples = 227
value = [219, 8]

gini = 0.0
samples = 13
value = [13, 0]

gini = 0.397
samples = 77
value = [56, 21]

gini = 0.264
samples = 32
walue = [27, 5]

gini = 0.463
samples = 11
value = [7, 4]

gini = 0.488
samples = 19
value = [8, 11]

gini = 0.296
samples = 249
value = [45, 204]

o8 SLIT
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X[0] = Distance
X[1] = Humidity
X[2] = Temp

X[3] = Current Rain
X[4] = Rain Rage

X[5] = Water levels
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Progress

* Decision Making Model 2

> Data Sources :-

* Crowdsource Data. (Accepted)

» [s Flooding.
= [s Affected.

= Water level.

e Rainfall Prediction value at the time.

* Decision Tree Classification.
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Progress

* Decision Making Model2

> Data Sources :-

* Crowdsource Data. (Accepted)

» [s Flooding.
= [s Affected.

= Water level.

e Rainfall Prediction value at the time.

* Decision Tree Classification.
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Completed Models Accuracy

Data Decision Tree
SLR SVM ANN Data

81.2 79.4  89.01 BT 50.4%

79 770 843 52.4%

Accuracy table of water prediction models Accuracy table of decision tree model

hL[IT
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Water Model Classification Levels

Normal 1

Alert Level 2
Minor Level 3

Major Level 4

2 SLIIT
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Work Breakdown Structure

Early Flood Prediction

Froject initializing
Stage

Research
Background Survey

Documentation

Implementation

Training

Topic selection

Topic discussion

— Gather requirement

Literature survey

Topic assessment
form

Data mining

identifying loT
technologies

Project chater

Development of Prediction

model

Preparation of
project proposal

Development of Decision
Making model

Preparation of
research paper

IT18022902 | llukkumbureS.P.M.K. W.| 2021-124

Testing

Prediction Model
Training

Decision Making
Model Training

Complete Mode
Training

Models Testing

Cross Validation

System Testing
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Progress Completion

1. Obtained detailed data of daily water levels from Irrigation .
Department.(2020-2021).

2. Processed and cleaned data of the obtain data.
3. Training the flood forecasting model with river level data.
4. Built Dashboard to represent Daily Water Level.
5. Evaluation.
6. Build the decision-making model.
7. Test Models
------ SLIT
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Final Touches

1. Update the Web Dashboard to Represent Decision Making Model

Predictions.
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Commercialization of Models API

Subscription (monthly/ annually) based API access for

forecasts.

One-time payment access for forecast in [oT device

purchase
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Research Problem

® Monitoring weather data

® Transmission live of weather data

?

‘@

® All users not able to access the applications.

® Providing weather data for users who could not
access the system.

We will be focusing on a comprehensive solution to overcome such
Issues.
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Objectives

Specific Objective

® Implementation of smart weather monitoring device which will transmit
information to the application and implementation of a method to cater to the

users who could not use our system.

Sub objectives

® Implementing a smart weather monitoring device to monitor weather factors.

® Successfully transmit information from the loT device to the application
without any commotions.

® SMS based weather information providing for non subscribed users.
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ESEARCH METHODOLOGY
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High-Level Component Diagram

=
T

Access Point (Wif1)

led«

LCD Scresen

D

0 A

Sensors

ESP32

Mobile Application

)

RTC Module

=

Desktop Application

User (SMS)
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Methodology

The loT Device perspective will be consisting of 2 major parts
1. Implementation a smart weather monitoring device.

2. Non-Subscribed users to be able to receive weather data information.

1. Implementation a smart weather monitoring device

%* Weather monitoring is done with the help of 10T sensors.

*3* Gathered weather data will be transmitted to the DB with the help of an
ESP32 module.

*2* These transmitted data will be previewed on the mobile application loT data
dashboard.
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Methodology

2. Non-Subscribed users to be able to receive weather data information.

N/ . ! . .
%* Users could receive weather information despite of access to the
applications.

‘0‘ . . . .

#* User will receive weather information upon request only.
N/ . : .

%* User needs to request information based on the location.

NG . . . . i
*s* User needs to request via SMS by stating the location and will receive the
update via same mode.

11/5/2021 48

11/5/2021 48



28 SLIIT
i FACULTY OF COMPUTING

v

User send location
via SMS

v

Retrieves weather data from
the 1oT DB

Provides weather
data via SMS

Device Power on

Establishes the connection
between the device and Wi-Fi
connection

Establishes the connection
with the Database

h

Begins to read weather information

Transmits sensor information
every 30 seconds

v

Update Database

Flow Diagram of the loT system function

Y

Praview on the web
application Dashboard

| Preview on the mobile
“| application Dashboard

..
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Completion of the project

Designing a PCB for the IoT device to increase the productivity and
the performance of it.

Assembling of the IOT device with all relevant modules(Sensors,
microcontroller).

Successfully established the 10T device and the Database
connection successfully.

Successfully preview the IOT device data on the mobile application
dashboard.

Partially completed the SMS based weather data providing
methodology.



ages of the
sks completed

11/5/2021

51



Images of the tasks completed

® Datais transmitted from the ESP32 to the Firebase live database and the mobile application
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Commercialization

Contract with the state
authorities which they
could purchase this
device for there day to
day needs.

Contract with external

parties to transmit live

data to there own
Databases.




Next Progress
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Research Problem

» Usually, the input source of data for a crowdsourcing
solution gathered from the public crowd.

» Identified challenges
1. Sourcing the right crowd
2. Validate the accuracy of data (Data integrity)

3. Receive datain precise and concise format

4. Periodically receive live data

» During this research, the primary focus is to design a
comprehensive solution.
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Objectives

Specific Objective

» Main objective is to collect weather information from public crowd,
validate gathered information using statistical data analysis techniques

Sub objectives
» Implement a way to source the right crowd

» validate the accuracy of crowd sourcing data (Data integrity)
» Structure the data in precise and concise format

» periodically receive live data
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RESEARCH METHODOLOGY

s SLIT
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High-Level Component Diagram

Lo

web application

T Database

Data

10T Device

Weather APIs

/s & Valldate

) User Inputs '
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Web Server
Mobile User

Rescue Managers
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Crowdsourcing Solution Logical View

()
95 Crowd Sourcing Ul (Mobile App)
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S > Crowdsource Data s et
. o S Endpoint Reports Notifications
o L ndpoin
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] Crowdsource Crowdsource Analytical s us
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e
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o E am Database
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Methodology

The Crowdsourcing solution is divided into two main parts
1. Gather weather information from the crowd

2. Display crowdsourcing data to the users

1. Gather weather information from the crowd

» Information gathered through set of questionaries

» User interface for answering questionaries
» User should be able to easily provide near accurate information

» Impacted location is automatically captured through Mobile location fe

28 SLIIT
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Methodology

2. Display crowdsourcing data to the users

» Current location of the user who views data should automatically capture
» If user needs, he should be able to change the location
» Captured/selected location specific crowd sourcing information can be

» Crowdsourcing data manipualtion follows sequence of processings

IT18012620 V.Y Samarasiri  2021-124



Data Manipulation Flow

User clicks dashboard

Enter Location

Unable to retrieve
information

available for
location

Find the common
data set

Compare against
10 T&API Data

Get the Summary to
ul

-&
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Achievement

» Successfully implemented mobile user registration

» Establishing connection to the open weather map API using unique API
» Successfully retrieved live weather data from Open Weather Map API
» Finalized the crowdsourcing data

» Implemented the crowdsourcing Ul

» retrieve crowdsourcing weather data from DB and find the common data se

validate the data set against IOT data & weather API data

» Finally visualize the summary to main dashboard
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Tools and Technologies

Android studio
Java

Java Script
Firebase

OpenWeatherMap API

vV v v Vv Vv

‘ fg.g) 5

q Opel-'i-Weather
Firebase Java
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Evidence for Completion

1.07 4 &

Weather Wizzard

WEATHER WIZZARD

SIGN IN TO GET STARTED

G Sign in with Google

Il @) <
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1:08 4 & BNOR = . 98% M

Home

Instant Weather Hourly Forecasts Daily Forecasts

pannipitiya SEARCH

Pannipitiya, LK

overcast clouds

27.88 °C

27.88°C/27.88°C

G

1008.00

5.19km/
h

1:08 Gd &

Home

Instant Weather Hourly Forecasts

light rain

overcast clouds

overcast clouds

overcast clouds

light rain

light rain

IT18012620 V.Y Samarasiri

BNOQOR = . 98% M

Daily Forecasts

1:08 d &

Home

Instant Weather

2793 °C

28.03 °C

2021-124

BNOQOR = . 98% 0

Hourly Forecasts

moderate rain

moderate rain

moderate rain

moderate rain

moderate rain

moderate rain

Daily Forecasts

28.29°C

2637 C

28.08 °C

28.75°C

28.62°C

2827 °C




1:08 Gd & BNOWR = . 98% M 2:12 & NOR = . 84%m 2:12 Gd &

Dashboard

Crowdsourcing Dashboard

DEVICE DATA CROWD SOURCE DATA

ggg ( Pannipitiya ] CQD Severity of rainfall during flood: None

DEVICE DATA CROWD SOURCE DATA

=293t

Are you in affected area? ves O No O CROWDSOURCE DATA WEATHER API DATA

S Is affected: Yes ™ overcast clouds
Current weather situation ' Select one ¥ l a Is flooding: No ﬂg 27.88 °C
ET ;
Flooding water level: O feet % 72%
Is it flooding? ves () no O
-@ Current weather situation: Overcast clouds %") 5.36km/h
Flooding water level \ Select one s ‘
9 ” Severity of rainfall: None Q 1007.00
. . 3320 Severity of rainfall during flood: None
Severity of rainfall Select one A ‘ =
10T DEVICE DATA
Severity of rainfall WEATHER API DATA ﬂ:_ b
during flood Select one > ‘
™ vercast clouds @ 95%
ﬂ;: 27.88 °C ‘.,.‘-‘ Not Raining
@ 72% ET 1.69cm
L g5 e e e &= 2t 1 ~ s s o
=4 -
= Crowdsourcing Dashboard Dashboard
i O < Il @) < 11
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Commercialization

» Contracting with relevant state authorities

» The application is sold to the state
authorities

11/5/2021
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Progress

» Ul Improvements for the final presentation

» Website design
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Background Study

RAINFALL

Temperature

Sea Level V
Pressure

Relative Humidity
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h gap

Exiting projects

 Machine Learning models and algorithms-based approach.

Proposed Research

* Temperature, humidity, Pressure, Location, Time(day, month)

* Logistic Regression & Support Vector Machine.

gEﬁ?IE“SL"T
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ion & Problems

— s

1. Out of main 3 factors smaller factors too affect
rainfall?

2. Small factors also will be need to consider in
predicting rainfall?

3. There is chance to small factors becomes
considerable?

BESLIT IT17181648 | Vinobaji S | 124-2021 78
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*Collects historical weather data different
time frame.
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Specific objectives and sub-objectives

* Main objectives

* To find out effective data set for predict rainfall based on machine
learning and identify which dataset contribute to predict flooding.

e Analysis of weather historical data(temperature, relative humidity,
Sea level pressure) and predict rainfall.

* Analysis of weather historical data(temperature, relative humidity,
Sea level pressure) based on Location and time(day, month)predict
rainfall.

dash i il * Checking accuracy different between each model.

R

it Fac

;

IT17181648 | Vinobaji S | 124-2021 80



ETHODLOGY
design

Provide processed Information

..l-‘r

Prowvide
Day to Day 3rd Party Data e ——
Y ¥ Y ——

Database Server

sl Update Predict Information

b — r
C_" [ ] Rainfall prediction magdel
ll‘ﬂ-sf ?

Web Server

Viieather Information.
Alerts,

Predict Information ) ) -
Provide Historic Reference

Data

Mobile .
Provide -
Alerts, Public Data Source

Weather Data
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1 s
allly il
AR o inl%e

Y

Weather historical data Relevant data _

1
Data processing Training data

Machine IeaLning model Training machine learming
r
| —
Rainfall prediction » | O—— F ==
o
Evalution

I
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e, N\ YD ot5 Processing

Daily Data(2015-2019)
v Rainfall

v' Temperature

v Relative Humidity
v Sea Level pressure

After cleaning missing data rows
(2015-2019 = 1826 days X 3 stations = 5478)

Row — 5390
Columns — 07

L 020200k IT17181648 | VinobajiS | 124-2021
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ARCH METHODLOGY
Processing

A 1 B 1 C | D | E | F 1 G 1
1 |Station_MName vy mm dd Tem_Max RH_Min Rainfall{mm)
2 |COLOMEBO 2015 1 1 30.3 7o 0
3 |COLOMEBO 2015 1 2 29.9 72 0
4 |COLOMEO 2015 1 3 30.2 J0 0
2> |COLOMEBO 2015 1 4 31.2 63 1.5
& |COLOMEBO 2015 1 > 31 73 0
f |COLOMEO 2015 1 6 32.5 74 J.o
& |COLOMEO 2015 1 Fy 31.4 65 0
g |COLOMBO 2015 1 a8 30.1 Fis] 0
10 | COLOMEBO 2015 1 = 30 73 0
11 |COLOMBO 2015 1 10 31.9 60 0

EHEE
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RCH METHODLOGY

| , NG PROCESS
 san h/él.mm/;q oata ahsng_|———b hnased Data ——t/ spitoata L Tenose

F /- i v r o
Check Accuracy ]<} / Rainfall Prediction Test Model ]4 L Trained model
= A,

-----

NDE LY 930202k T17181648 | Vinobaji S | 124-2021 86




RESULTS
ression( Daily Data)

90

. 77.71
20.97 74.38
69.28 69.63 69.25 ' 68.2 67.7

" o711 o400 :
60
50
40
30
20
10

0

Tem_Max, RH_Min, Month Tem_Max, RH_Min, Month ,Station Tem_Max, RH_Min, Month (Colombo) Tem_Max, RH_Min, Month (Katugastota) Tem_Max, RH_Min, Month (Vavuniya)
B Training Accuracy(%) M Testing Accuracy(%)
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\RCH RESULTS

regression( Daily Data)

Tem_Max, RH_Min, Month, Pressure (Vavuniya)

Tem_Max, RH_Min, Month, Pressure (Katugastota)

DATA SET

Tem_Max, RH_Min, Month, Pressure (Colombo)

Tem_Max, RH_Min, Month , Pressure (Vavuniya)

Tem_Max, RH_Min (Vavuniya)

06/03/2021

Model Accuracy

65

85.63

86.3
78.28
78.66
137
72.4

85.63

86.3
85.3
84.78
70 75 80 85 90
ACCURACY
¥ Testing Accuracy(%) ¥ Training Accuracy(%)
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ACCURACY

SLIIT
Faculty of Computing

RESULTS
omparison

MODLE ACCURACY

B Accuracy(percentage) LR(B) M Accuracy(percentage) SVM(B)
m Accuracy(percentage) SVM(M) | Accuracy(percentage) AUTO-ML(B)
m Accuracy(percentage) AUTO-ML (M)

~
C

N

on
~ ©O

o~ oo 3
o0 S O oo
g | g
o~ m~ "
O

OLOMB KATUGASTOTA
LOCATION
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> Process

| 3 /
owe === i

4[‘.3-[ Create new Data ]

ves

[ Location1 models |

5 oma [ neweme S
Data
yes
s

Location 1%

Location 2%

l>[ Location2 models ] ﬁh
SN
_ [ MUt model ]
Location 37
veEs
l>[ Location3 models ]
S
= .
‘_/' Rain Range
=z QLI : . )
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. "\RESBARCH ACHIEVEMENTS
v'Data Collectio

v'Data Processing
v’ Train the Model
v'Choose a Model
v'Evaluate Model
v'Make Predictions

NDE LY 930202k IT17181648 | Vinobaji S | 124-2021
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» Integration
» Testing

-----

il YT

rocess
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Thank Youl!
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