EARLY WARNING FOR PRE AND POST FLOOD RISK MANAGEMENT

2021-124

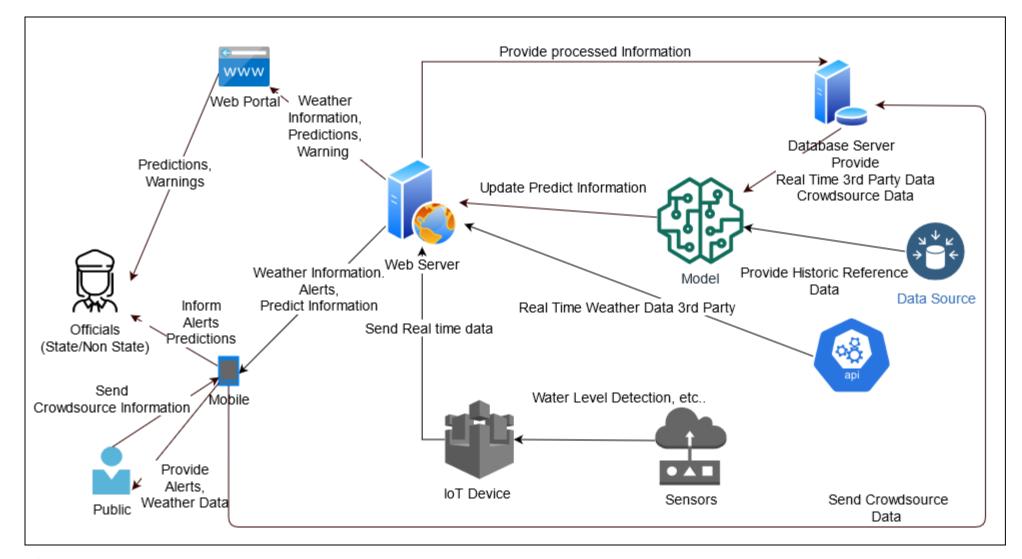
INTRODUCTION

Overall Project Description

- Flooding and landslides have been a very treacherous situation in Sri Lanka where many areas are flooded for the slightest rain.
- Flooding happens due to various reasons such as human and natural reasons.
- Comprehensive analysis on utilizing IOT devices for weather prediction
- Analyze 3rd party API solutions which provides and real-time weather information and develop Proof-of-Concept to verify the accuracy of weather information.
- Usage of data Mining algorithm for the weather prediction based on historic data analysis.
- The implementation of the solution will comply of a web application and mobile application will visualize the finalized data for the end users based on their needs

Research Problem

- Unavailability of an early warning tool will be very costly for most of the countries
- One of the major problems that countries face when a flooding situation takes place is, loss of human lives, property losses, agricultural losses, and economic losses.
- Due unadvanced system, poor coordination between people and the officials increase the flood disaster loses and recovery plans are delayed.
- To address these situations, we propose to develop an early warning structure to minimize the devastating destruction that could be caused.


Objectives

• Main Objective

Provide an early warning mechanism and predict severe weather conditions which may cause flooding with the use of real-time and historical data.

- Sub Objectives
 - Provide near real-time data collected from IoT devices feeds.
 - Develop severe rainfall prediction model based on historic data analysis and provide suggestions to the end users.
 - Develop crowdsourcing solution to gather weather information from public crowd, analyze and present them to the end users.
 - Create the Flood Forecasting Model to predict the flooding for the selected specific area using historic data collected from past years.

Overall System Diagram

FACULTY OF COMPUTING

Research Paper

1. ICAC - International Conference on Advancements in

Computing - 2021 Conference (SLIIT)

2. ICITR - International Conference on Information Technology Research - 2021 (Moratuwa University)

Commercialization

- Use for weather information application.
- Weather predictions for farmers near river basin.
- Weather predictions for residents living near river basin.
- First Responders in disaster management.
- Government authorities.

IT18022902 | ILUKKUMBURE S. P. M. K. W

Information Technology

INTRODUCTION

Research Question

• Sudden Flooding from a Rainfall can be predicted by preexisting models.

- Can residents in that area get informed as soon as possible before a heavy rainfall result it to flooding.
- Use of Data Driven Hydrological Models

Compared with hydrological models, data-driven models can obtain better or comparable forecasting results [3].

11

Challenges

• Forecasting Shorter Times

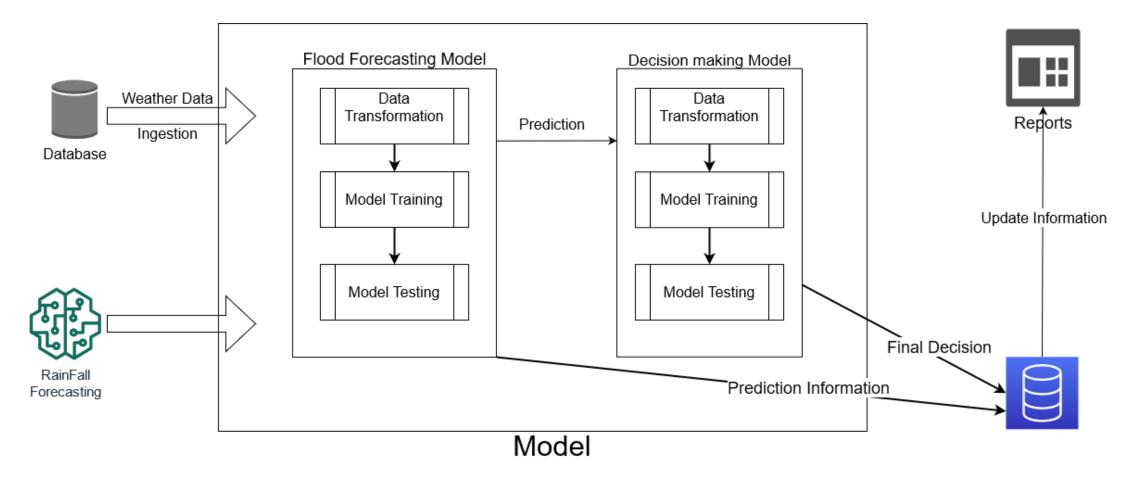
Urban Areas

• Forecasting Longer Times

□ Forecasting near river basin areas.

- Low Levels of accuracy
- Low Levels of performance

Objectives


Specific Objective

 Create the Flood Forecasting Model to predict the flooding for the selected specific area using historic data collected about past 3 years.

Sub objectives

- Analysis on river basin flooding using Hydrological model and datadriven model.
- Provide method to overcome challenge of low performance and low accuracy.

Study Area in Research

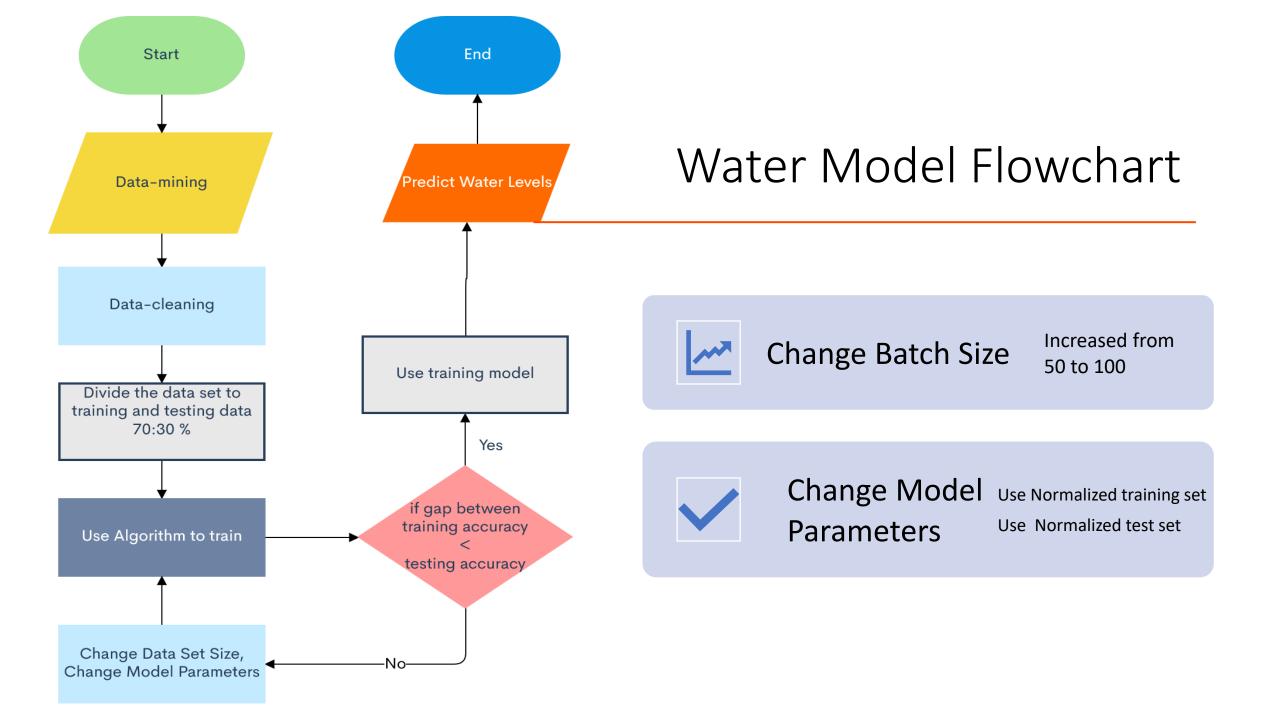
Kalu River Basin

- Ellagawa
- Kalawellawa (Millakanda)
- Magura
- Putupaula
- Ratnapura

Why?

Suitable for Poof-Of-Concept

- Urban Areas
- Riverside Areas
- Availability of Riverside data


Methodology

• Data-mining Gathering

• Data Reports from DMC (Disaster

Management Centre).

- Daily Reports
 Database
- Representation
 - Dashboards

Data used

weather model truth truth

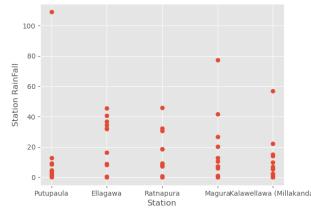
This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

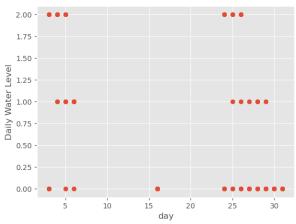
Water Levels of change in **river** on time basis

Number of water levels in a specific station.

Real-time Water levels

Flow Directions of the river.


Rainfall model prediction's data


PP1 Achievement

- Successfully crawled through DMC scrapped data
- Processed and cleaned data


• Predicted water level of 5 stations in June

• Daily water level Rising based on days of May.

Achievement

PP1 Achievement

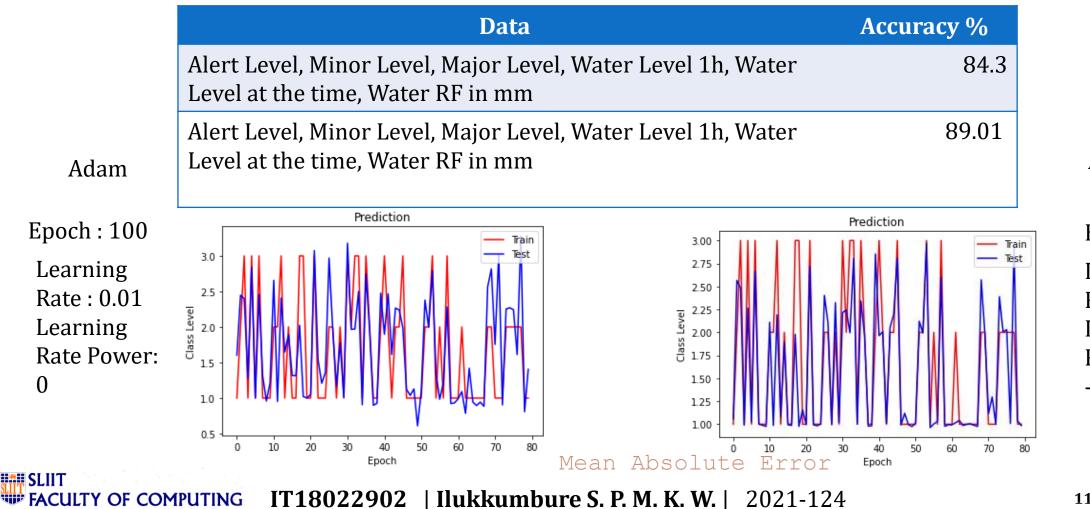
• Training Accuracy of Simple Linear Regression

Data	Accuracy
Alert Level, RF in mm	36.51%
Alert Level, Minor Level, Major Level, Water RF in mm	51.24%
Alert Level, Minor Level, Major Level, Water Level 1h, Water Level at the time, Water RF in mm	62.5%
Alert Level, Minor Level, Major Level, Water Level 1h, Water Level at the time, Water RF in mm, Water Level Rising or Falling	<mark>65.84%</mark>
Alert Level, Minor Level, Major Level, Water Level 1h, Water Level at the time, Water RF in mm, Water Level Rising or Falling, <mark>Remarks</mark>	-4.29%

PP1 Achievement

• Training Accuracy of **Support vector machines**

Data	Accuracy
Alert Level, Minor Level, Major Level, Water Level 1h, Water Level at the time, Water RF in mm	79.5%
Alert Level, Minor Level, Major Level, Water Level 1h, Water Level at the time, Water RF in mm, Water Level Rising or Falling	<mark>93.84%</mark>

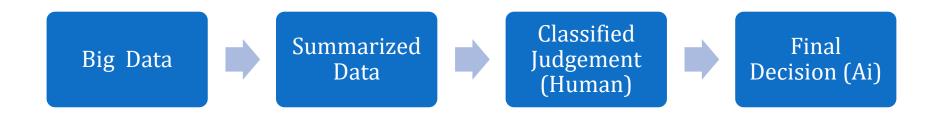

Achievement

• Training Accuracy of **Artificial Neural Network**

IT18022902

0

FACULTY OF COMPUTING


2021-124

Adamax

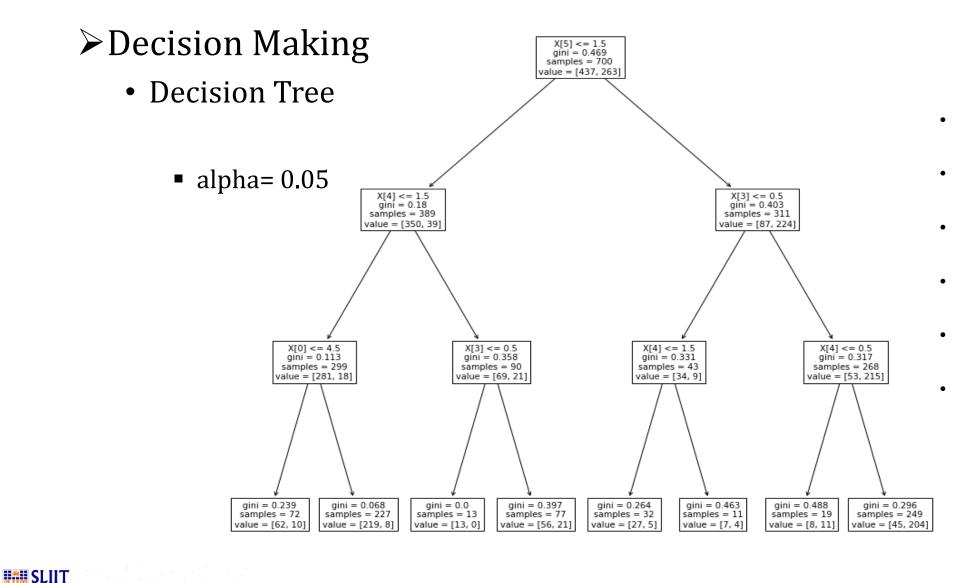
Epoch : 100 Learning Rate : 0.0001 Learning Rate Power: -0.5

Decision Making

• With Summarized Data

Progress

• Decision Making Model


► Data Sources :-

- IoT sensor live feed.
 - Ultra-Sonic Sensor Reading.
 - Temperature
 - Humidity

- Rainfall Prediction value at the time.
- Water Level Prediction Model Classification value at the time.

T JLIII			
FACULTY OF COMPUTING	IT18022902	Ilukkumbure S. P. M. K. W.	2021-124

							Current_	Rain_Ran	Water_Le	
timestamp	name	_value	name	value	name	value	Rain	ge	vel_Class	
	Distance		Relative		Temperat	31.20000				
1629734639	cm	4.097	Humidity	78	ure °C	1	FALSE	NoRain	0	
	Distance		Relative		Temperat					
1626886919	cm	3.978	Humidity	78	ure °C	31.6	FALSE	NoRain	0	
	Distance		Relative		Temperat					
1626886920	cm	3.978	Humidity	78	ure °C	31.6	FALSE	NoRain	0	
	Distance		Relative		Temperat					
1626887029	cm	3.995	Humidity	78	ure °C	31.6	FALSE	NoRain	0	
	Distance		Relative		Temperat					
1626887030	cm	3.995	Humidity	78	ure °C	31.6	FALSE	NoRain	0	
	Distance		Relative		Temperat					
1626887039	cm	3.961	Humidity	78	ure °C	31.6	FALSE	NoRain	0	

- X[0] = Distance
- X[1] = Humidity
- X[2] = Temp
- X[3] = Current Rain
- X[4] = Rain Rage

X[5] = Water levels

Progress

- Decision Making Model 2
 - ≻Data Sources :-
 - Crowdsource Data. (Accepted)
 - Is Flooding.
 - Is Affected.
 - Water level.
 - Rainfall Prediction value at the time.
 - Decision Tree Classification.

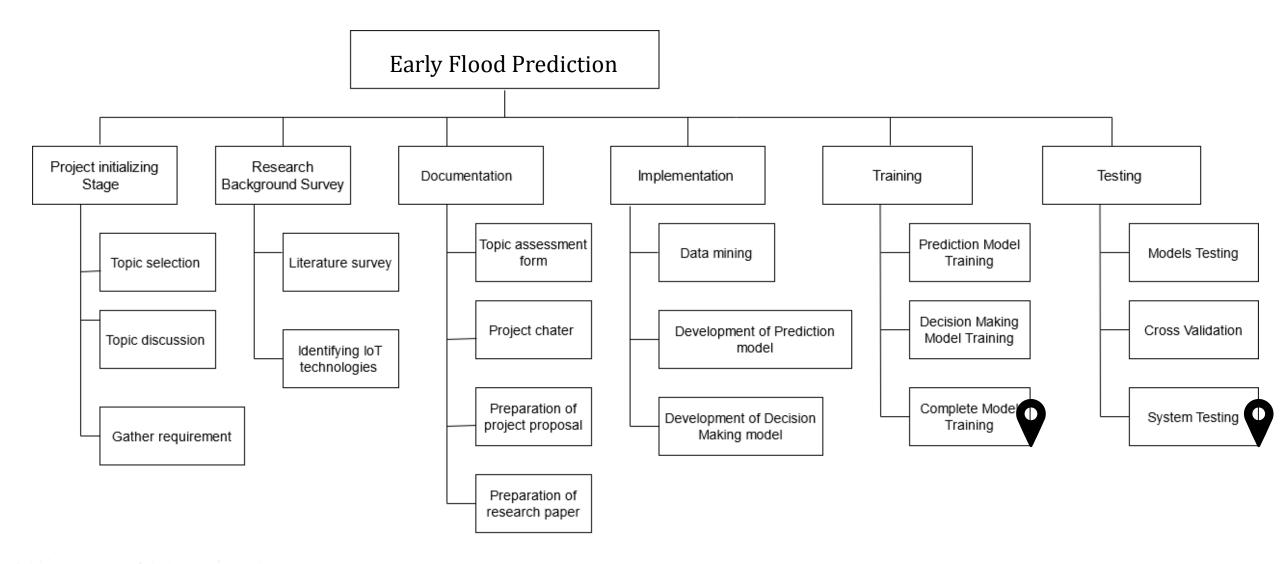
Progress

- Decision Making Model2
 - ≻Data Sources :-
 - Crowdsource Data. (Accepted)
 - Is Flooding.
 - Is Affected.
 - Water level.
 - Rainfall Prediction value at the time.
 - Decision Tree Classification.

Completed Models Accuracy

Data	Accuracy(percentage)		
	SLR	SVM	ANN
Train	81.2	79.4	89.01
Test	79	77.0	84.3

Accuracy table of water prediction models


Data	Decision Tree
Train	50.4%
Test	52.4%

Accuracy table of decision tree model

Water Model Classification Levels

Classification	Value
Normal	1
Alert Level	2
Minor Level	3
Major Level	4

Work Breakdown Structure

Progress Completion

- Obtained detailed data of daily water levels from Irrigation . Department.(2020-2021).
- 2. Processed and cleaned data of the obtain data.
- 3. Training the flood forecasting model with river level data.
- 4. Built Dashboard to represent Daily Water Level.
- 5. Evaluation.
- 6. Build the decision-making model.
- 7. Test Models

Final Touches

 Update the Web Dashboard to Represent Decision Making Model Predictions.

Commercialization of Models API

Subscription (monthly/ annually) based API access for forecasts.

One-time payment access for forecast in IoT device purchase

REFERENCES

- M. Campolo, P. Andreussi, and A. Soldati, "River flood forecasting with a neural network model," Water Resources Research, vol. 35, no. 4, pp. 1191–1197, 1999, doi: 10.1029/1998WR900086.
- [2] S. Kokularamanan, A. W. M. Rasmy, D. Perera, and T. Koike, "Development of a Flood Forecasting and Data Dissemination System for Kalu River Basin in Sri Lanka," *Annual Sessions of IESL, The Institution of Engineers, Sri Lanka*, vol. 1, pp. 205–210, 2017.
- [3] A. Mosavi, P. Ozturk, and K. W. Chau, "Flood prediction using machine learning models: Literature review," Water (Switzerland), vol. 10, no. 11, pp. 1–40, 2018, doi: 10.3390/w10111536.
- [4] B. Li *et al.*, "On the operational flood forecasting practices using low-quality data input of a distributed hydrological model," *Sustainability (Switzerland)*, vol. 12, no. 19, 2020, doi: 10.3390/su12198268.
- [5] S. Puttinaovarat and P. Horkaew, "Flood Forecasting System Based on Integrated Big and Crowdsource Data by Using Machine Learning Techniques," *IEEE Access*, vol. 8, pp. 5885–5905, 2020, doi: 10.1109/ACCESS.2019.2963819.
- [6] S. N. Yang and L. C. Chang, "Regional inundation forecasting using machine learning techniques with the internet of things," *Water (Switzerland)*, vol. 12, no. 6, 2020, doi: 10.3390/W12061578.
- [7] R. J. Moore, V. A. Bell, and D. A. Jones, "Forecasting for flood warning," *Comptes Rendus Geoscience*, vol. 337, no. 1–2, pp. 203–217, 2005, doi: 10.1016/j.crte.2004.10.017.
- [8] H. Thilakarathne and K. Premachandra, "Predicting Floods in North Central Province of Sri Lanka using Machine Learning and Data Mining Methods," Research, 2017.

IT18003406 | MOHAMED M. F.

Information Technology

IT18003406 | Mohamed M.F | 2021_124

SLIIT

FACULTY OF COMPUTING

INTRODUCTION

11/5/2021 41

Research Problem

- Monitoring weather data
- Transmission live of weather data
- All users not able to access the applications.
- Providing weather data for users who could not access the system.

We will be focusing on a comprehensive solution to overcome such issues.

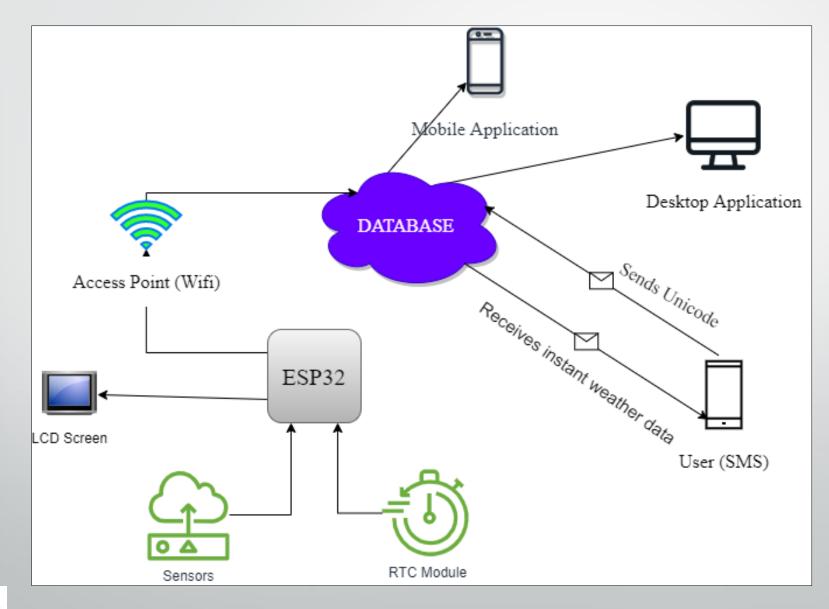
Objectives

Specific Objective

 Implementation of smart weather monitoring device which will transmit information to the application and implementation of a method to cater to the users who could not use our system.

Sub objectives

- Implementing a smart weather monitoring device to monitor weather factors.
- Successfully transmit information from the IoT device to the application without any commotions.
- SMS based weather information providing for non subscribed users.


RESEARCH METHODOLOGY

Technologies and Techniques

High-Level Component Diagram

FACULTY OF COMPUTING

Methodology

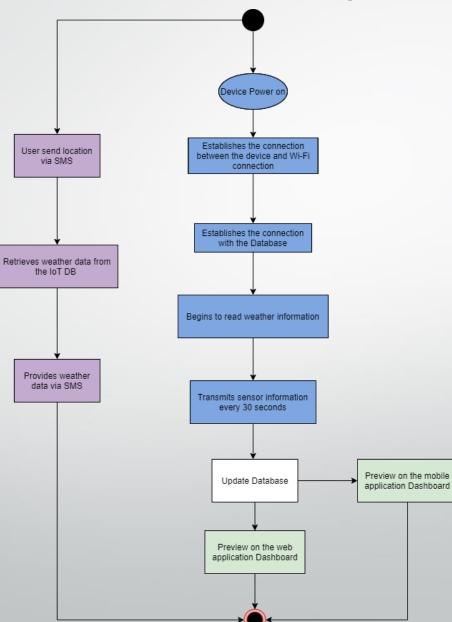
The IoT Device perspective will be consisting of 2 major parts

- **1.** Implementation a smart weather monitoring device.
- 2. Non-Subscribed users to be able to receive weather data information.

1. Implementation a smart weather monitoring device

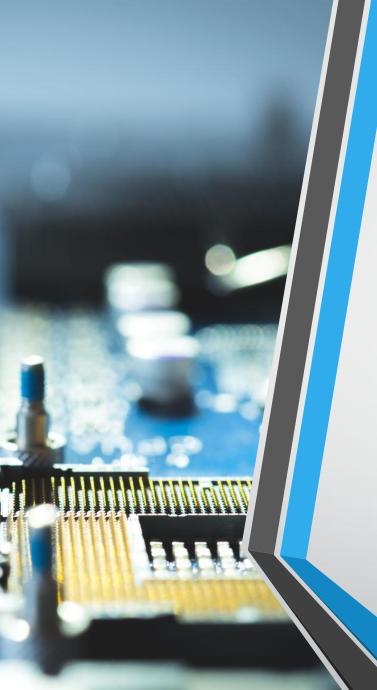
- Weather monitoring is done with the help of IoT sensors.
- Gathered weather data will be transmitted to the DB with the help of an ESP32 module.
- These transmitted data will be previewed on the mobile application IoT data dashboard.

Methodology


2. Non-Subscribed users to be able to receive weather data information.

- Users could receive weather information despite of access to the applications.
- User will receive weather information upon request only.
- User needs to request information based on the location.
- User needs to request via SMS by stating the location and will receive the update via same mode.

11/5/2021 48


Flow Diagram of the IoT system function

IIII SLIIT

FACULTY OF COMPUTING

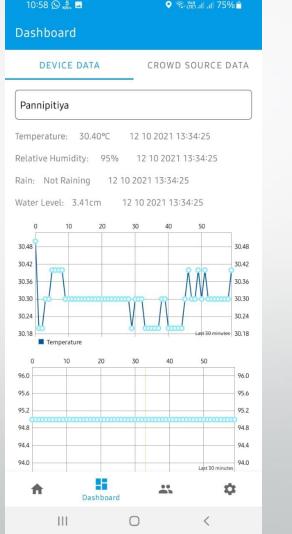
11/5/2021 49

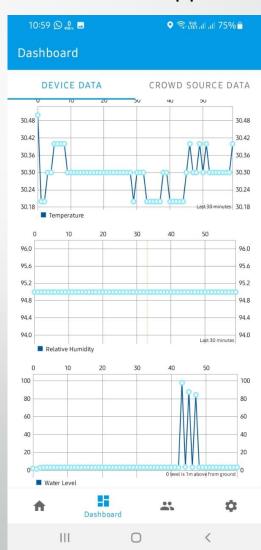
Completion of the project

- Designing a PCB for the IoT device to increase the productivity and the performance of it.
- Assembling of the IOT device with all relevant modules(Sensors, microcontroller).
- Successfully established the IOT device and the Database connection successfully.
- Successfully preview the IOT device data on the mobile application dashboard.
- Partially completed the SMS based weather data providing methodology.

lmages of the tasks completed

FACULTY OF COMPUTING


Images of the tasks completed


Data is transmitted from the ESP32 to the Firebase live database and the mobile application previews the IoT device data
 10:58 © 2. ■
 10:58 © 2. ■
 10:59 © 2. ■
 10:59 © 2. ■

UNIT SLIIT

FACULTY OF COMPUTING

52

Commercialization

Contract with external parties to transmit live data to there own Databases.

SLIIT

FACULTY OF COMPUTING

Contract with the state authorities which they could purchase this device for there day to day needs.

Next Progress

DESIGNING OF AN ENCLOSURE FOR THE IOT DEVICE FURTHER TUNINGS IN THE MOBILE APPLICATION REGARDING THE IOT INTERFACES. IMPLEMENTATION AND CONFIGURATION OF THE SMS WEATHER DATA PROVIDING SYSTEM.

FACULTY OF COMPUTING

IT18012620 | V.Y SAMARASIRI

Information Technology

SLIIT FACULTY OF COMPUTING IT18012620 | V.Y Samarasiri | 2021_124

INTRODUCTION

IT18012620 V.Y Samarasiri 2021-124

11/5/202 57

Research Problem

V.Y Samarasiri

2021-124

- Usually, the input source of data for a crowdsourcing solution gathered from the public crowd.
- Identified challenges

CULTY OF COMPUTING

- 1. Sourcing the right crowd
- 2. Validate the accuracy of data (Data integrity)
- 3. Receive data in precise and concise format
- 4. Periodically receive live data
- During this research, the primary focus is to design a comprehensive solution.

IT18012620

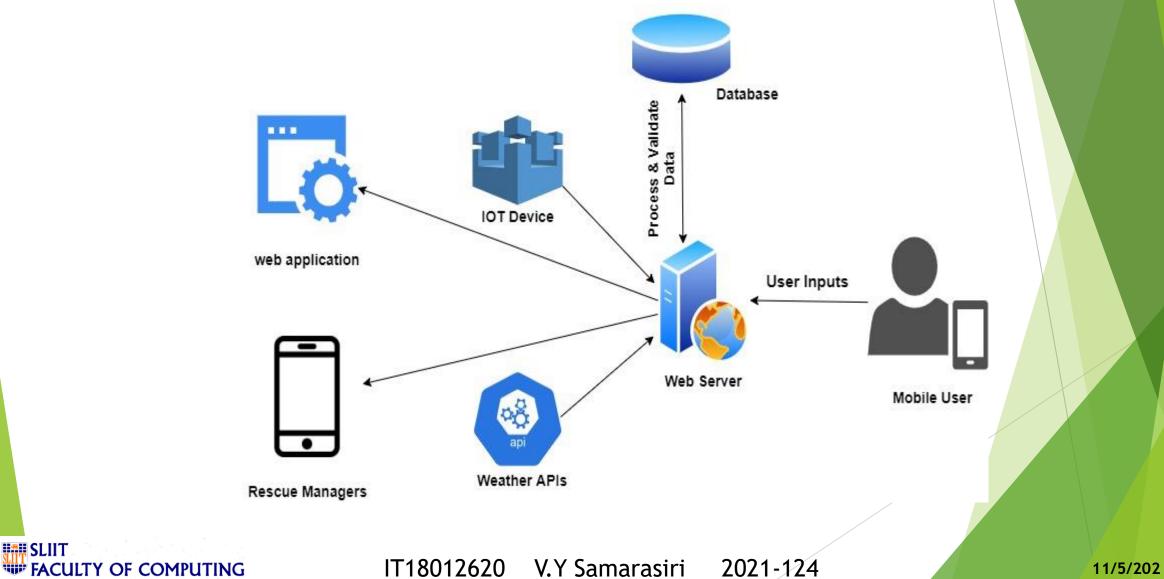
Objectives

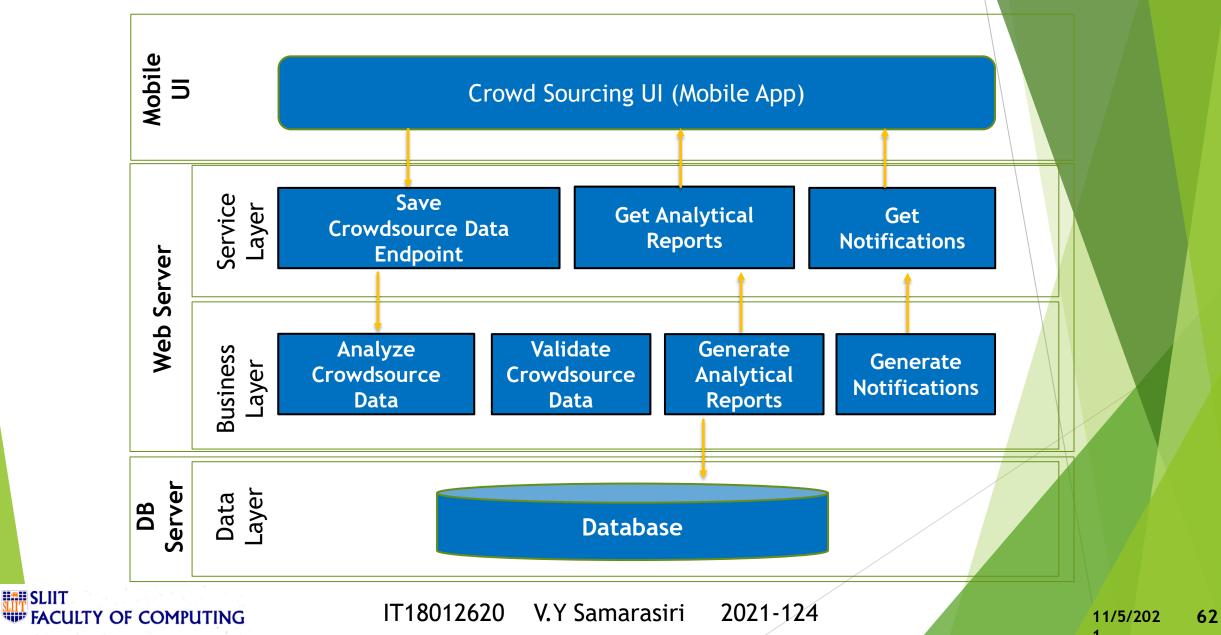
Specific Objective

Main objective is to collect weather information from public crowd, analyze and validate gathered information using statistical data analysis techniques

Sub objectives

- Implement a way to source the right crowd
- validate the accuracy of crowd sourcing data (Data integrity)
- Structure the data in precise and concise format
- periodically receive live data


RESEARCH METHODOLOGY


IT18012620 V.Y Samarasiri 2021-124

11/5/202 **60**

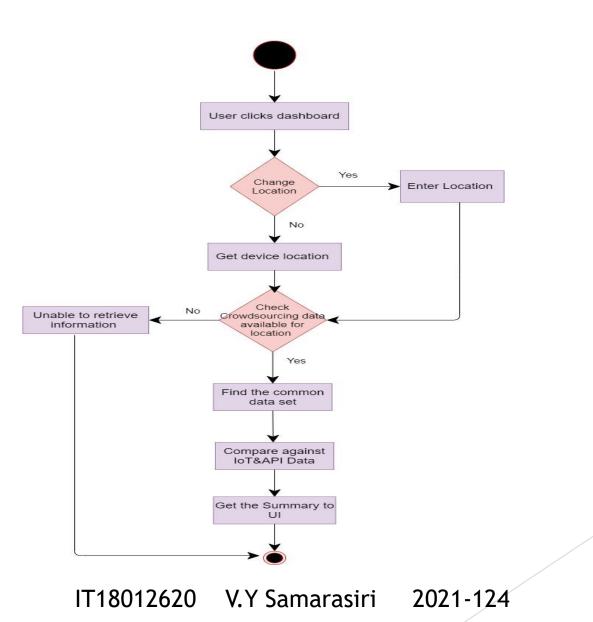
High-Level Component Diagram

Crowdsourcing Solution Logical View

Methodology

- The Crowdsourcing solution is divided into two main parts
- 1. Gather weather information from the crowd
- 2. Display crowdsourcing data to the users

1. Gather weather information from the crowd


- Information gathered through set of questionaries
- User interface for answering questionaries
- User should be able to easily provide near accurate information
- Impacted location is automatically captured through Mobile location feature

Methodology

2. Display crowdsourcing data to the users

- Current location of the user who views data should automatically captured
- If user needs, he should be able to change the location
- Captured/selected location specific crowd sourcing information can be visualized
- Crowdsourcing data manipualtion follows sequence of processings

Data Manipulation Flow

FACULTY OF COMPUTING

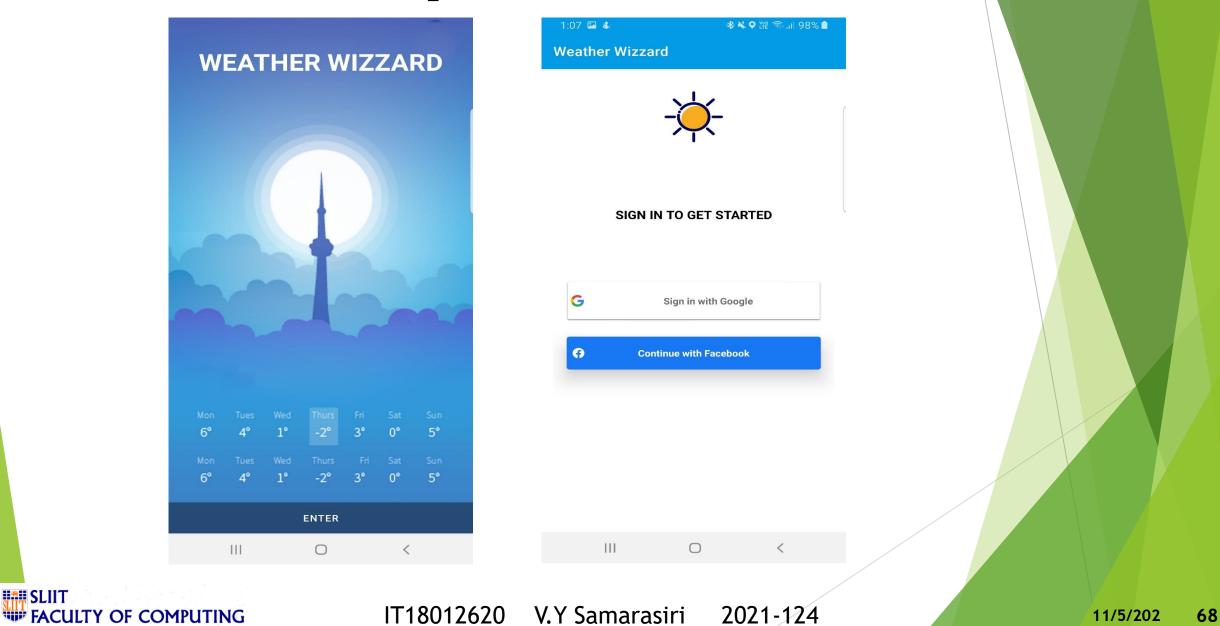
Achievement

- Successfully implemented mobile user registration
- Establishing connection to the open weather map API using unique API key
- Successfully retrieved live weather data from Open Weather Map API
- Finalized the crowdsourcing data
- Implemented the crowdsourcing UI
- retrieve crowdsourcing weather data from DB and find the common data set and validate the data set against IOT data & weather API data
- Finally visualize the summary to main dashboard

IT18012620 V.Y Samarasiri 2021-124

Tools and Technologies

- Android studio
- Java
- Java Script
- Firebase
- OpenWeatherMap API



IT18012620 V.Y Samarasiri 2021-124

Evidence for Completion

4

1:08 🖬 💰	**	\$ ♀ ﷺ किII 98% ∎	1:08 🖼
Home			Home
Instant Weather	Hourly Forecasts	Daily Forecasts	Instant W
pannipitiya		SEARCH	
Pa	annipitiya,	LK	
	updated: 11 October 2021		
	<u> </u>		
	overcast clouds		
	27.88 °C / 27.88 °C		
	0		
%			
70%	5.19km/ h	1008.00	
*			
Home		\$	Home
111	0	<	

.ıll 98% 🗎	1:08 🖼 💰	* 🐳	♥ ₩ 🖘 💷 98% 🗎
	Home		
Forecasts	Instant Weather	Hourly Forecasts	Daily Forecasts
021 07:00 28.1 ℃	~	Monda moderate rain	ay 11 October 2021 28.29 °C
021 08:00 27.93 ℃	~	Tuesda moderate rain	ay 12 October 2021 26.37 ℃
021 09:00 28.03 ℃	~	Wednesda moderate rain	ay 13 October 2021 28.08 °C
021 10:00 27.74 ℃	~ *	Thursda moderate rain	ay 14 October 2021 28.75 ℃
021 11:00 27.33 ℃	~ *	Frid. moderate rain	ay 15 October 2021 28.62 °C
2021 12:00 26.55 ℃	- ~	Saturda moderate rain	ay 16 October 2021 28.27 ℃
\$	ft Home		\$
	111	0	<

FACULTY OF COMPUTING

IT18012620 V.Y Samarasiri 2021-124

* 🗙 오 🕍 🕤

11 October 2

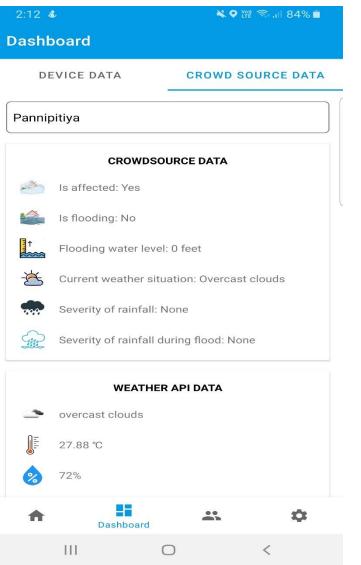
....

light rain

overcast clouds

overcast clouds

overcast clouds


light rain

light rain

 \bigcirc

Ш

1:08 ⊠ & Crowdsourcing	≉ ¥ 오 ﷺ 📚 ॥ 98% 🛢
Are you in affected area?	Yes O No O
Current weather situation	Select one
Is it flooding?	Yes 🔿 No 🔿
Flooding water level	Select one
Severity of rainfall	Select one
Severity of rainfall during flood	Select one
★ 55	Crowdsourcing
III C) <

2:12 🖾 💰		K 🗢 Kee	💐 🛛 🖓 🖓 ,ill 84% 🗎		
Dashboard					
DEVICE DATA		CROWD SOURCE DATA			
(Page Bage Bage Bage Bage Bage Bage Bage B	Severity of rainfall during flood: None				
	WEATHER API DATA				
	overcast clouds				
J III	27.88 ℃				
2	72%				
	5.36km/h				
9	1007.00				
	IOT DEV	ICE DATA			
	30.50 ℃				
2	95%				
199	Not Raining				
↑	1.69cm				
A	Dashboard		\$		
	111 0		<		
/					

FACULTY OF COMPUTING

IT18012620 V.Y Samarasiri 2021-124

Commercialization

- Contracting with relevant state authorities
- The application is sold to the state authorities

FACULTY OF COMPUTING IT18012620 | V.Y Samarasiri | 2021_124

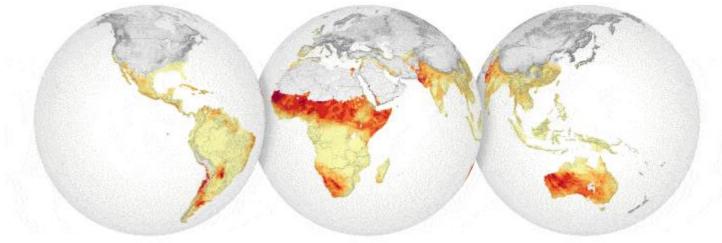
11/5/2021

71

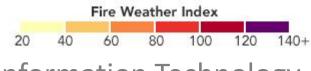
Progress

UI Improvements for the final presentation

Website design

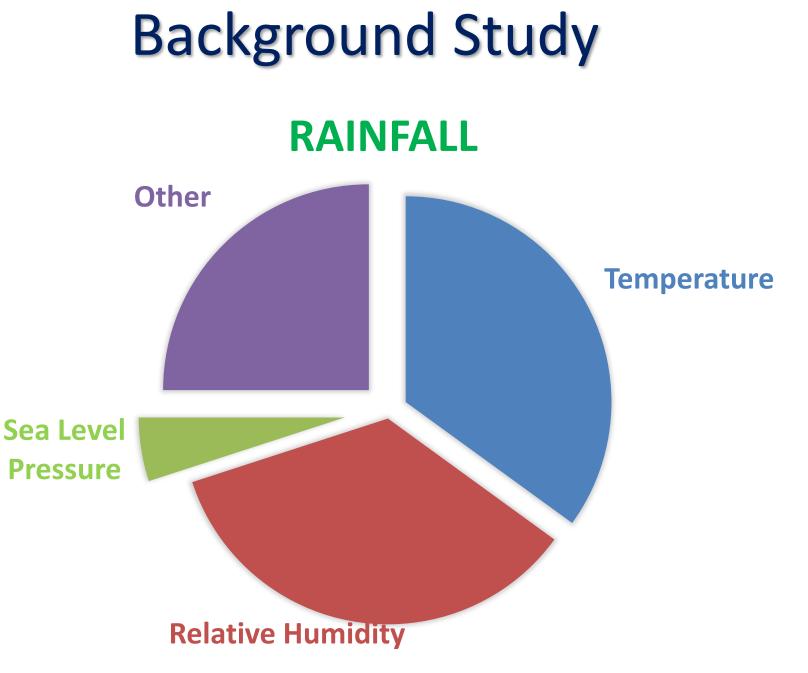


IT18012620 V.Y Samarasiri 2


References

- [1] S. Frigerio, L. Schenato, G. Bossi, M. Mantovani, G. Marcato, and A. Pasuto, "Hands-on experience of crowdsourcing for flood risks. An android mobile application tested in Frederikssund, Denmark," *Int. J. Environ. Res. Public Health*, vol. 15, no. 9, 2018, doi: 10.3390/ijerph15091926.
- [2] Z. Song, H. Zhang, and C. Dolan, "Promoting disaster resilience: operation mechanisms and self-organizing processes of crowdsourcing," *Sustain.*, vol. 12, no. 5, pp. 1–14, 2020, doi: 10.3390/su12051862.
- [3] G. Q. Daniele Mezzana, "Crisis mapping and crowdsourcing in flood management," Integr. Flood Manag. Tool Ser., vol. 26, no. 1.0, pp. 1–90, 2017, doi:10.13140/RG.2.2.35313.07527.

January 2015



Information Technology

IT17181648 | Vinobaji S.

Exiting projects

• Machine Learning models and algorithms-based approach.

Proposed Research

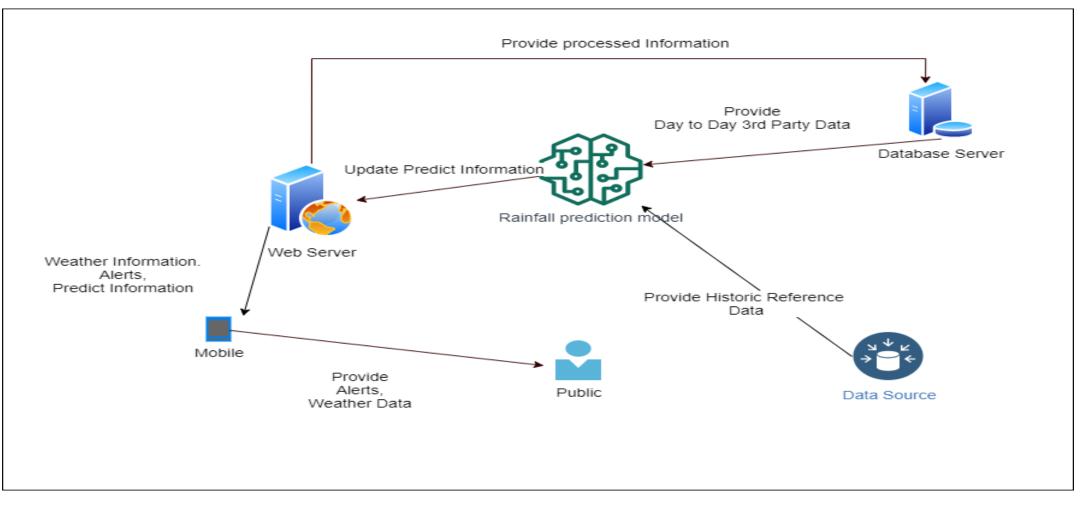
- Temperature, humidity, Pressure, Location, Time(day, month)
- Logistic Regression & Support Vector Machine.

Research question & Problems

1. Out of main 3 factors smaller factors too affect rainfall?

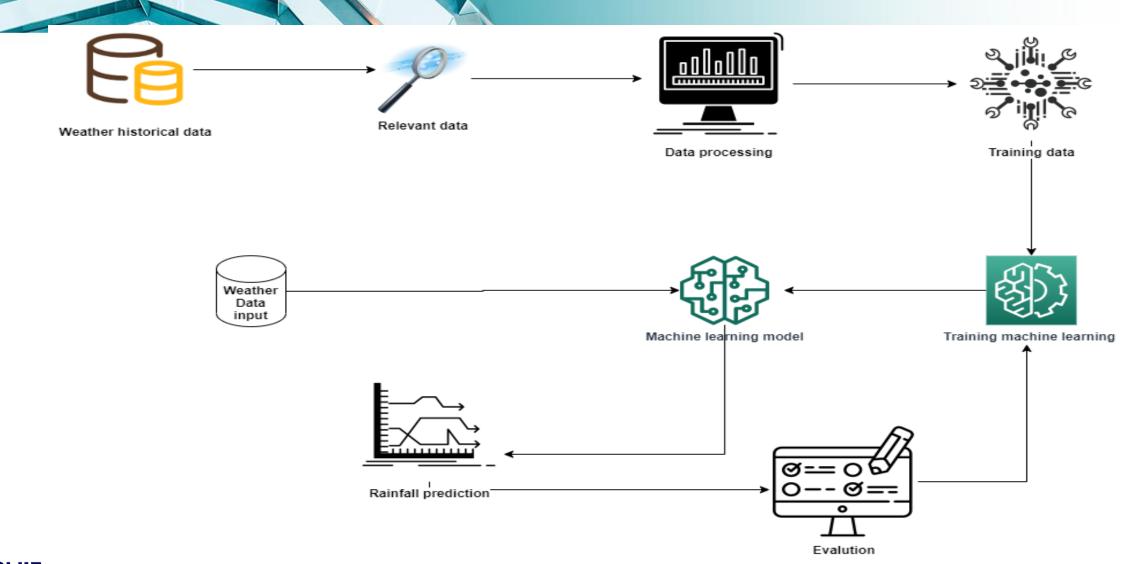
- 2. Small factors also will be need to consider in predicting rainfall?
- 3. There is chance to small factors becomes considerable?

•Collects historical weather data different time frame.


Specific objectives and sub-objectives

- Main objectives
- To find out effective data set for predict rainfall based on machine learning and identify which dataset contribute to predict flooding.

Specific Objectives


- Analysis of weather historical data(temperature, relative humidity, Sea level pressure) and predict rainfall.
- Analysis of weather historical data(temperature, relative humidity, Sea level pressure) based on Location and time(day, month)predict rainfall.
- Checking accuracy different between each model.

RESEARCH METHODLOGY System design

RESEARCH METHODLOGY

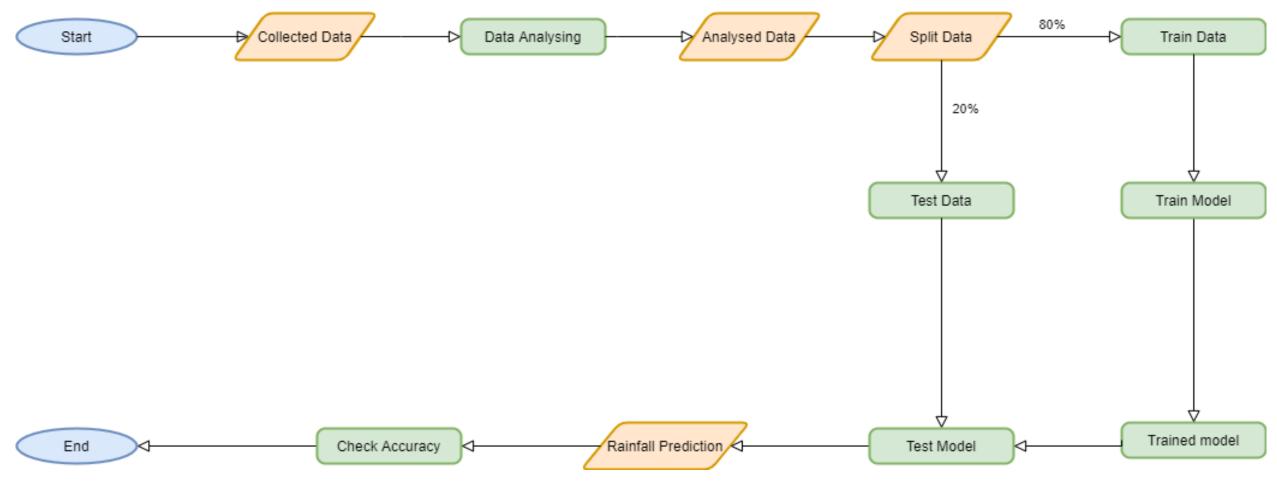
RESEARCH METHODLOGY Data Processing

Daily Data(2015-2019)

- ✓ Rainfall
- ✓ Temperature
- ✓ Relative Humidity
- ✓ Sea Level pressure

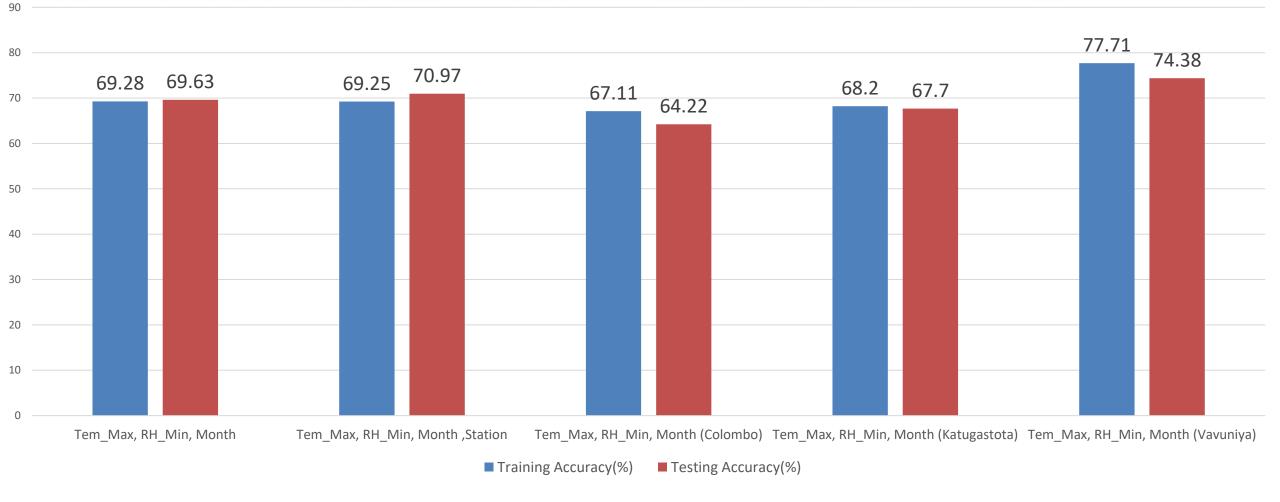
After cleaning missing data rows (2015-2019 = 1826 days X 3 stations = 5478)

Row – 5390 Columns – 07



RESEARCH METHODLOGY Data Processing

	Α	В	С	D	E	F	G
1	Station_Name	уу	mm	dd	Tem_Max	RH_Min	Rainfall(mm)
2	COLOMBO	2015	1	1	30.3	76	0
3	COLOMBO	2015	1	2	29.9	72	0
4	COLOMBO	2015	1	3	30.2	70	0
5	COLOMBO	2015	1	4	31.2	68	1.5
6	COLOMBO	2015	1	5	31	73	0
7	COLOMBO	2015	1	6	32.5	74	7.5
8	COLOMBO	2015	1	7	31.4	65	0
9	COLOMBO	2015	1	8	30.1	75	0
10	COLOMBO	2015	1	9	30	73	0
11	COLOMBO	2015	1	10	31.9	60	0



RESEARCH METHODLOGY TRAINING PROCESS

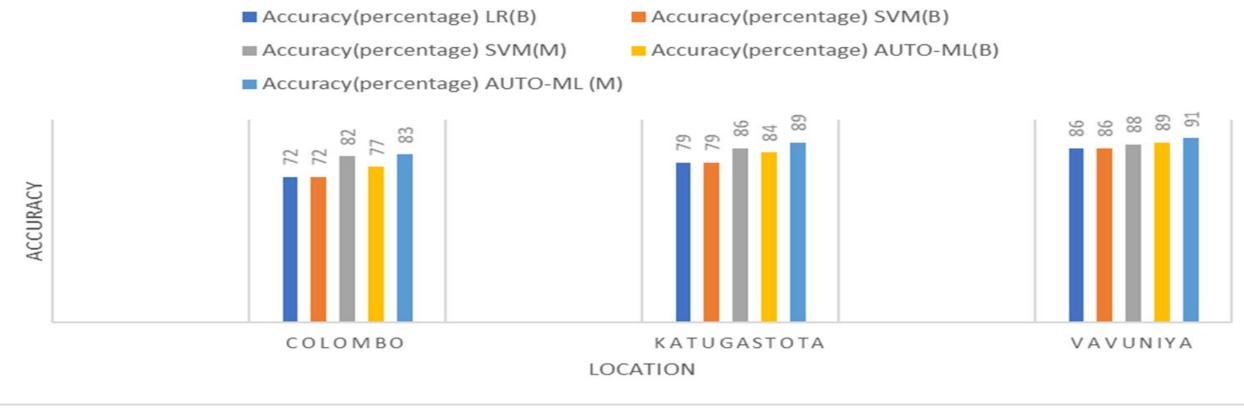
RESEARCH RESULTS Training Logistic regression(Daily Data)

SLIIT Faculty of Computing 06/03/2021

RESEARCH RESULTS

Training Logistic regression(Daily Data)

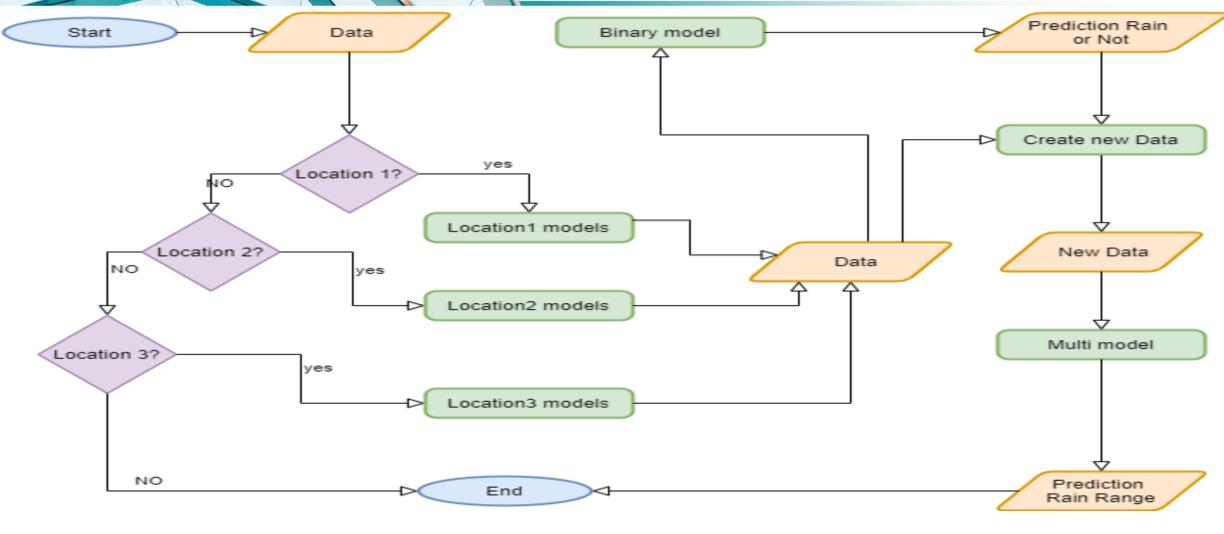
Model Accuracy


IT17181648 | Vinobaji S | 124-2021

90

RESEARCH RESULTS

Accuracy Comparison


MODLE ACCURACY

Faculty of Computing

06/03/2021

Prediction Process

RESEARCH ACHIEVEMENTS

- ✓ Data Collection
- ✓ Data Processing
- ✓ Train the Model
- ✓ Choose a Model
- ✓ Evaluate Model
- ✓ Make Predictions

>Integration

......

Demo

FACULTY OF COMPUTING IT18022902 | Ilukkumbure S. P. M. K. W. | 2021-124

Q & A

Thank You!

